ЯКОБИАН |
Большая советская энциклопедия (БЭС) |
функциональный определитель aik1n с элементами 0171281659.tif , где yi = fi (X1,..., Xn), l i n, — функции, имеющие непрерывные частные производные в некоторой области А; обозначение:
0104999472.tif
.
Введён К. Якоби (1833, 1841). Если, например, n = 2, то система функций
y1 = f1 (. x1, x2), y2 = f2 (x1, x2) (1)
задаёт отображение области , лежащей на плоскости x1, x2, на часть плоскости y1, y2. Роль Я. для этого отображения во многом аналогична роли производной для функции одной переменной. Например, абсолютное значение Я. в некоторой точке М равно коэффициенту искажения площадей в этой точке (т. е. пределу отношения площади образа окрестности точки М к площади самой окрестности, когда размеры окрестности стремятся к нулю). Я. в точке М положителен, если отображение (1) не меняет ориентации в окрестности точки М, и отрицателен в противоположном случае. Если Я. не обращается в нуль в области и (y1, у2) — функция, заданная в области 1 (образе ), то
0113480863.tif
(формула замены переменных в двойном интеграле). Аналогичная формула имеет место для кратных интегралов (См. Кратный интеграл). Если Я. отображения (1) не обращается в нуль в области Д, то существует обратное отображение
x1 = 1 (y1, y2), x1 = 2(y1, y2),
причём
0183755444.tif
(аналог формулы дифференцирования обратной функции). Это утверждение находит многочисленные применения в теории неявных функций (См. Неявные функции). Для возможности явного выражения в окрестности точки М (x1(0),..., xn (0, y1(0),..., ym (0)) функций y1,..., ут, неявно заданных уравнениями Fk (x1,..., xn, y1,..., ум) = 0, (2)
1 k m,
достаточно, чтобы координаты точки М удовлетворяли уравнениям (2), функции Fk имели непрерывные частные производные и Я.
0194008307.tif
был отличен от нуля в точке М.
Лит.: Кудрявцев Л. Д., Математический анализ, 2 изд., т. 2, М., 1973; Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971.
|
Орфографический словарь Лопатина |
якоби`ан, якоби`ан, -а |
|
|